Electricidad Básica En la Mecánica Automotriz






INSTITUCIÓN EDUCATIVA ´´CENTRAL TÉCNICO``




 Resultado de imagen para logo central tecnico

NOMBRE: TASIHUANO CHURO MISHELL KARINA
CURSO: 10mo ´´ G ``
DOCENTE: ING. JULIO CALVOPIÑA


¿ QUÉ ES LA ELECTRICIDAD ?
Forma de energía que produce efectos luminosos, mecánicos, caloríficos, químicos, etc., y que se debe a la separación o movimiento de los electrones que forman los átomos.

Conductores.
Los conductores son aquellos materiales que contienen electrones que pueden moverse libremente. Son los materiales que nos van a servir para hacer circuitos eléctricos.
Entre los conductores se encuentran los metales, el agua salada, etc. Por estos materiales los electrones pueden desplazarse libremente de un punto a otro si le conectamos una fuente de tensión .
Imágenes de diversos materiales conductores.


Aislantes.
Los aislantes son materiales donde los electrones no pueden circular libremente, como por ejemplo la cerámica, el vidrio, plásticos en general, el papel, la madera, etc. Estos materiales no conducen la corriente eléctrica.
Imágenes de diversos materiales y utensilios aislantes.

 Semiconductores.
Los semiconductores, como el silicio o el germanio, presentan propiedades eléctricas que están entre los conductores y los aislantes. Se utilizan principalmente cómo elementos de los circuitos electrónicos.
Componentes con semiconductores.


CORRIENTE ELÉCTRICA
La corriente eléctrica es el flujo de carga eléctrica que recorre un material.​ Se debe al movimiento de las cargas (normalmente electrones) en el interior del mismo. Al caudal de corriente (cantidad de carga por unidad de tiempo) se lo denomina intensidad de corriente eléctrica.

VOLTAJE
La palabra voltaje o potencial eléctrica, la real academia la define como “cantidad de voltios que actúan en un aparato o sistemas eléctrico” El voltaje es la capacidad física que tiene un circuito eléctrico, debido a que impulsa a los electrones a lo extenso de un conductor, esto quiere decir, que el voltio conduce la energía eléctrica con mayor o menor potencia, debido a que el voltaje es el mecanismo eléctrico entre los dos cuerpos, basándose a que si los dos puntos establecen un contacto de flujo de electrones puede suceder una transferencia de energía de ambos puntos, porque los electrones son cargas negativas y son atraídas por protones con carga positiva, pero además los electrones son rechazados entre sí por tener la misma carga.  

QUÉ ES LA RESISTENCIA ELÉCTRICA


Resistencia eléctrica es toda oposición que encuentra la corriente a su paso por un circuito eléctrico cerrado, atenuando o frenando el libre flujo de circulación de las cargas eléctricas o electrones. Cualquier dispositivo o consumidor conectado a un circuito eléctrico representa en sí una carga, resistencia u obstáculo para la circulación de la corriente eléctrica.







A.-
Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia. B.- Electrones fluyendo por un mal conductor. eléctrico, que ofrece alta resistencia a su paso. En ese caso los electrones chocan unos contra otros al no poder circular libremente y, como consecuencia, generan calor.



Ley de Ohm.
La intensidad de corriente que atraviesa un circuito es directamente proporcional al voltaje o tensión del mismo e inversamente proporcional a la resistencia que presenta.
En forma de fracción se pone de la siguiente forma:
I igual a V entre R.
Donde I es la intensidad que se mide en amperios (A), V el voltaje que se mide en voltios (V); y R la resistencia que se mide en ohmios (Ω).
Resultado de imagen para ley de ohm

¿QUÉ ES UN CIRCUITO ELÉCTRICO?

 "Un Circuito Eléctrico es un conjunto de elementos conectados entre si por los que puede circular una corriente eléctrica".

 La corriente eléctrica es un movimiento de electrones, por lo tanto, cualquier circuito debe permitir el paso de los electrones por los elementos que lo componen. Si quieres saber más sobre qué es, como se genera y los fundamentos de la corriente eléctrica. circuitos electricos

 Solo habrá paso de electrones por el circuito si el circuito es un circuito cerrado. Los circuitos eléctricos son circuitos cerrados, aunque podemos abrir el circuito en algún momento para interrumpir el paso de la corriente mediante un interruptor, pulsador u otro elemento del circuito.

 Ahora vamos a estudiar los elementos que forman los circuitos eléctricos y los tipos de circuitos que hay.

PARTES DE UN CIRCUITO ELÉCTRICO

 Los elementos que forman un circuito eléctrico básico son:
que es un circuito electrico

 Generador: producen y mantienen la corriente eléctrica por el circuito. Son la fuente de energía. Hay 2 tipos de corrientes: corriente continua y alterna
 Pilas y Baterías: son generadores de corriente continua (c.c.)

 Alternadores: son generadores de corriente alterna (c.a.)

 Conductores : es por donde se mueve la corriente eléctrica de un elemento a otro del circuito. Son de cobre o aluminio, materiales buenos conductores de la electricidad, o lo que es lo mismo que ofrecen muy poca resistencia a que pase la corriente por ellos. 

 Receptores: son los elementos que transforman la energía eléctrica que les llega en otro tipo de energía. Por ejemplo las bombillas transforma la energía eléctrica en luminosa o luz, los radiadores en calor, los motores en movimiento, etc.

 Elementos de mando o control: permiten dirigir o cortar a voluntad el paso de la corriente eléctrica dentro del circuito. Tenemos interruptores, pulsadores, conmutadores, etc.

 Elementos de protección : protegen los circuitos y a las personas cuando hay peligro o la corriente es muy elevada y puede haber riesgo de quemar los elementos del circuito. Tenemos fusibles, magneto térmicos, diferenciales, etc.

 Para simplificar el dibujo de los circuitos eléctricos se utilizan esquemas con símbolos. Los símbolos representan los elementos del circuito de forma simplificada y fácil de dibujar.

 Veamos los símbolos de los elementos más comunes que se usan en los circuitos eléctricos.

simbolos circuitos electricos

TIPOS DE CIRCUITOS ELÉCTRICOS

 Dependiendo de como se conecten los receptores tenemos varios tipos de circuitos eléctricos diferente, aunque como luego veremos, también depende si el tipo de corriente que se utiliza en el circuito es corriente continua o corriente alterna trifásica.

Circuitos de 1 Receptor

 Son aquellos en los que solo se conecta al circuito un solo receptor: lámpara, motor, timbre, etc. Veamos un ejemplo de un circuito con una lámpara:

circuito con 1 receptor

Características de un Circuito con un Receptor

 El receptor quedará conectado a la misma tensión que el generador, por el receptor circulará una intensidad de corriente igual a la del circuito total y la única resistencia del circuito será la del receptor. Aquí tienes las fórmulas para este tipo de circuitos:

  It = I1; Vt = V1; Rt = R1


Circuitos en Serie

 En los circuitos en serie los receptores se conectan una a continuación del otro, el final del primero con el principio del segundo y así sucesivamente. Veamos un ejemplo de dos lámparas en serie:
circuito en serie

Características Circuitos en Serie

 Este tipo de circuitos tiene la característica de que la intensidad que atraviesa todos los receptores es la misma, y es igual a la total del circuito. It= I1 = I2.

 La resistencia total del circuito es la suma de todas las resistencias de los receptores conectados en serie. Rt = R1 + R2.

 La tensión total es igual a la suma de las tensiones en cada uno de los receptores conectados en serie. Vt = V1 + V2.

 Podemos conectar 2, 3 o los receptores que queramos en serie.

 Si desconectamos un receptor, todos los demás receptores en serie con el, dejaran de funcionar (no puede pasar la corriente).

Circuitos en Paralelo

 Son los circuitos en los que los receptores se conectan unidas todas las entradas de los receptores por un lado y por el otro todas las salidas. Veamos el ejemplo de 2 lámparas en paralelo.

circuitos en paralelo

Característica de los Circuitos en Paralelo

 Las tensiones de todos los receptores son iguales a la tensión total del circuito. Vt = V1 = V2.

 Las suma de cada intensidad que atraviesa cada receptor es la intensidad total del circuito. It = I1 + I2.

 La resistencia total del circuito se calcula aplicando la siguiente fórmula: 1/Rt = 1/R1 + 1/R2; si despejamos la Rt quedaría:

  Rt = 1/(1/R1+1/R2)

 Todos los receptores conectados en paralelo quedarán trabajando a la misma tensión que tenga el generador.

 Si quitamos un receptor del circuito los otros seguirán funcionando.

   Aquí te dejamos un ejemplo de conexión real en serie y en paralelo de 2 bombillas con cables. Fíjate sobre todo en el circuito paralelo que no hace falta hacer ningún empalme en los cables, se unen en los bornes (contactos) de las propias lámparas.

conexion serie y paralelo tipos de circuitos electricos

Circuito Mixtos o Serie-Paralelo

 Son aquellos circuitos eléctricos que combinan serie y paralelo. Lógicamente estos circuitos tendrán más de 2 receptores, ya que si tuvieran 2 estarían en serie o en paralelo. Veamos un ejemplo de un circuito mixto.

tipos de circuitos electricos

 En este tipo de circuitos hay que combinar los receptores en serie y en paralelo para calcularlos.

Conmutadas

 Las conmutadadas son circuitos eléctricos cuya misión es poder encender una o varias lámparas, pero desde 2 o más puntos diferentes.

 Un ejemplo claro es en los pasillos largos en los que podemos encender la lámpara desde 2 sitios o más diferentes (al principio y al final del pasillo, por ejemplo).

 Ojo estos circuitos llevan conmutadores. Los conmutadores por fuera son igual que los interruptores, pero por dentro tienen 3 bornes (contactos) en lugar de 2 que tendría un interruptor normal. Veamos un conmutador de 3 bornes:

conmutador

 Los conmutadores de 4 bornes se llaman conmutadores de cruzamiento, necesario para instalaciones donde podemos encender un punto de luz desde 3 o más sitios diferentes y tienen 4 bornes en lugar de 3 como los conmutadores simples..

 Vemos como son los circuitos de conmutadas

Conmutada desde 2 Puntos

 Podemos encender o activar un receptor desde 2 sitios diferentes.

conmutada

Conmutada desde 3 Sitios diferentes (cruzamiento)


 Podemos encender o activar un receptor desde 3 o más sitios diferentes. Veamos la conexión.
conmutada cruzamiento

 Como has podido ver aquí ya necesitamos un conmutador de cruzamiento. Si queremos desde 4 sitios solo tendríamos que colocar otro conmutador de cruzamiento en el medio. Así, colocando más conmutadores de cruzamiento, podemos encender un receptor desde tantos puntos diferentes como queramos.

CIRCUITOS ELÉCTRICOS EN CORRIENTE ALTERNA

 Los circuitos con corriente alterna (c.a.) se calculan y analizan de diferente manera que los de c.c. aunque seguimos teniendo las conexiones de receptores en serie, paralelo o mixtos igualmente, además de alguna más que veremos.
 En corriente alterna trifásica, al ser como mínimo 3 conductores (3 fases), en lugar de 2 conductores como en monofásica o corriente continua, los tipos de circuitos o conexiones pueden ampliarse. En estos casos tenemos, además de serie, paralelo y mixtos, las conexiones o circuitos en estrella, en triángulo, en zig-zag y en uve.

 Si suponemos un receptor, lámpara, motor, etc., como si fuera una resistencia podemos tener los siguientes tipos de circuitos o conexiones:



 Aquí tienes algunos circuitos con lámparas:

tipos de circuitos electrico



Comentarios

Entradas populares de este blog

Las Emociones

Carátula

Partes de un motor